资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
沪科版八年级数学下册17.4一元二次方程的根与系数的关系同步测试题带答案学校:_班级:_姓名:_考号:_A组基础达标 逐点击破知识点1 利用根与系数的关系求两根之和与两根之积1若x1,x2是一元二次方程x25x+6=0的两个根,则x1+x2,x1x2的值分别是( )A1,6B5,6C5,6D5,62对于一元二次方程2x23x+4=0,它的根的情况是( )A有两个不相等的实数根B两根之和是3C两根之积是2D没有实数根32022福州模拟方程x2+x3=0与方程x22x=1的所有实数根的和是( )A1B1C2D13+222知识点2 利用根与系数的关系求相关代数式的值42023滨州模拟已知一元二次方程x2+4x1=0的两个根分别为m,n,则m+nmn的值是( )A5B3C3D55若m,n是一元二次方程x23x2=0的两个根,则1m+1n=_.6.已知x1,x2是方程x2+6x+3=0的两个根,求下列代数式的值:(1) x12+x22;(2) x2x1+x1x2;(3) (x1+1)(x2+1).知识点3 利用根与系数的关系求方程中待定字母的取值或范围7已知关于x的方程x2+mx+n=0的两个根分别为x1=1,x2=2,则mn=_.8.已知关于x的一元二次方程x2+2mx+m2+m=0有实数根.(1) m的取值范围是_;(2) 若该方程的两个实数根分别为x1,x2,且x12+x22=12,求m的值.知识点4 已知两根的和与积,求一元二次方程9已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是( )Ax27x+12=0Bx2+7x+12=0Cx2+7x12=0Dx27x12=0易错点 运用根与系数的关系时忽视根的判别式102023岳阳已知关于x的一元二次方程x2+2mx+m2m+2=0有两个不相等的实数根x1,x2,且x1+x2+x1x2=2,则实数m=_B组能力提升 强化突破112024绥化小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2和5.则原来的方程是( )Ax2+6x+5=0Bx27x+10=0Cx25x+2=0Dx26x10=0122024泸州已知x1,x2是一元二次方程x23x5=0的两个实数根,则(x1x2)2+3x1x2的值是_13.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1) k的取值范围是_;(2) 若x1x2=5,求k的值.14若关于x的方程x2+(a1)x+a2=0的两个根互为倒数,求a的值.C组核心素养拓展 素养渗透152024内江节选【模型观念】已知关于x的一元二次方程x2px+1=0(p为常数)有两个不相等的实数根x1和x2(1) 填空:x1+x2=_,x1x2=_;(2) 已知x12+x22=2p+1,求p的值参考答案课堂导学例题引路【思路分析】利用根与系数的关系求代数式值的三个步骤:(1)算:计算出两根的和与积;(2)变:将所求的代数式表示成两根的和与积的形式;(3)代:代入求值例 (1) 【规范解答】 , 是方程x23x5=0 的两根,+=3,=5例 (1) 【规范解答】1+1=+=35(2) 【规范解答】2+2=(+)22=322(5)=19(3) 【规范解答】()2=(+)24=324(5)=29=29 或29A组基础达标 逐点击破知识点1 利用根与系数的关系求两根之和与两根之积1D 2D 3B知识点2 利用根与系数的关系求相关代数式的值4B532 6(1) 解:x12+x22=30.(2) x2x1+x1x2=10.(3) (x1+1)(x2+1)=2.知识点3 利用根与系数的关系求方程中待定字母的取值或范围76 8(1) m0 (2) 解:由x12+x22=12可得(x1+x2)22x1x2=12.x1+x2=2m,x1x2=m2+m,(2m)22(m2+m)=12,解得m=3或m=2.m0,m=2,即m的值为2.知识点4 已知两根的和与积,求一元二次方程9A易错点 运用根与系数的关系时忽视根的判别式103 B组能力提升 强化突破11B1214 13(1) k34 (2) 解:由题意,得x1x2=k2+1=5,解得k=2或k=2.由(1)知k34,则k的值为2.14解: 方程的两个根互为倒数, 两根的积为1.由根与系数的关系,得a2=1,解得a=1.当a=1时,原方程为x2+1=0,0;当p=1时,=p24=30,不合题意,舍去.p的值为3第 4 页 共 4 页
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号