资源预览内容
第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
第9页 / 共10页
第10页 / 共10页
亲,该文档总共10页全部预览完了,如果喜欢就下载吧!
资源描述
甘肃省武威市2023-2024学年高二下学期6月月考数学试题学校:_姓名:_班级:_考号:_一、单选题1小亮的爸爸记录了小亮从4岁到10岁的身高,建立了小亮身高与年龄的回归模型,他用的这个模型预测小亮11岁时的身高,则下面的叙述正确的是()A小亮11岁时的身高在149.75cm左右B小亮11岁时的身高在149.75cm以下C小亮11岁时的身高一定是149.75cmD小亮11岁时的身高在149.75cm以上2已知平面的一个法向量为,直线的方向向量为,若,则实数().A1B2C3D43一个盒子里装有相同大小的白球黑球共20个,其中黑球6个,现从盒中随机的抽取5个球,则概率为的事件是()A没有白球B至多有2个黑球C至少有2个白球D至少有2个黑球4已知函数,则的极小值点为()ABCD5色差和色度是衡量毛绒玩具质量优劣的重要指标,现抽检一批产品测得数据列于表中.已知该产品的色度y和色差x之间满足线性相关关系,且,现有一对测量数据为,若该数据的残差为0.6,则()色差x21232527色度y15181920A23.4B23.6C23.8D24.06设甲乘汽车、动车前往某目的地的概率分别为0.3、0.5,汽车和动车正点到达目的地的概率分别为0.6、0.8,则甲正点到达目的地的概率为()A0.62B0.64C0.58D0.687在平行六面体中,点是线段上的一点,且,设,则()ABCD8若不等式在上恒成立,则的最小值为()ABC1D二、多选题9已知随机变量满足,则下列选项正确的是()ABCD10已知函数有两个极值点,且,则()ABCD的图象关于点中心对称11如图,在棱长为2的正方体中,点是棱的中点,点是底面上的一点,且平面,则下列说法正确的是()AB存在点,使得C的最小值为D的最大值为6三、填空题12为了比较E、F、G、H四组数据的线性相关性强弱,某同学分别计算了E、F、G、H四组数据的线性相关系数,求得数值依次为,则这四组数据中线性相关性最强的是 组数据.13已知平面的一个法向量为,点是平面上的一点,则点到平面的距离为 .14一批小麦种子的发芽率是0.7,每穴只要有一粒发芽,就不需补种,否则需要补种则每穴至少种 粒,才能保证每穴不需补种的概率大于97%(lg30.48)四、解答题15人们曾经相信,艺术家将是最后被A所取代的职业,但技术的进步已经将这一信念敲出了裂痕,这可能是A第一次引起人类的恐慌,由noval A,DALLE2等软件创作出来的给画作品风格各异,乍看之下,已与人类绘画作品无异,A会取代人类画师吗?某机构随机对60人进行了一次调查,统计发现认为会取代的有42人,30岁以下认为不会取代的有12人,占30岁以下调查人数的(1)根据以上数据完成如下22列联表:年龄理解情况总计会取代不会取代30岁以下1230岁及以上总计4260(2)依据小概率值的独立性检验,能否认为年龄与理解情况有关?并说明原因0.100.050.0100.0050.0012.7063.8416.6357.87910.828参考公式:,其中16已知函数.(1)若,求的极值;(2)讨论函数的单调性.17如图,在四棱锥中,四边形是菱形,点是棱的中点(1)证明:;(2)求平面与平面所成角的余弦值18我国脱贫攻坚经过8年奋斗,取得了重大胜利.为巩固脱贫攻坚成果,某项目组对某种农产品的质量情况进行持续跟踪,随机抽取了10件产品,检测结果均为合格,且质量指标分值如下:38,70,50,45,48,54,49,57,60,69,已知质量指标不低于60分的产品为优质品.(1)从这10件农产品中任意抽取两件农产品,记这两件农产品中优质品的件数为Y,求Y的分布列和数学期望(2)根据生产经验,可以认为这种农产品的质量指标服从正态分布,其中近似为样本质量指标平均数,近似为方差,生产合同中规定,所有农产品优质品的占比不得低于15%.那么这种农产品是否满足生产合同的要求?请说明理由.附:若,则,.19已知函数(1)若恰有两个零点,求a的取值范围;(2)若的两个零点分别为(),求证:试卷第3页,共4页参考答案:1A 2C3B4B5A6C7C8C9AD10BCD11ACD121314315(1)列联表见解析(2)年龄与理解情况无关,此推断犯错误的概率不大于0.010;理由见解析.【详解】(1)完成22列联表如下:年龄理解情况总计会取代不会取代30岁以下18123030岁及以上241630总计421860(2)设为:年龄与理解情况相互独立,即年龄与理解情况无关,由题意,所以根据小概率的独立性检验,我们推断成立即认为年龄与理解情况无关,此推断犯错误的概率不大于0.01016(1)极小值为,无极大值(2)答案见解析【详解】(1)当时,则定义域为,则当时,;当时,;在上单调递减,在上单调递增,极小值为,无极大值.(2)由题意知:定义域为,;当时,若,则;若,则;在上单调递增,在上单调递减;当时,若,则;若,则;在上单调递减,在上单调递增;综上所述:当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.17(1)证明过程见详解(2)【详解】(1)连接,在菱形中,所以,在中,所以,所以,在中,所以,所以,又,平面,所以平面,又平面,所以,因为四边形是菱形,所以,又,平面,所以平面,又平面,所以(2)记,连接,由点是棱的中点,且点是的中点,所以,又由(1)知平面,所以平面,则以为坐标原点,所在的直线分别为轴,轴,轴建立空间直角坐标系,如图所示,所以,所以,设平面的一个法向量为,所以,即,令,解得,所以平面的一个法向量为,因为是的中点,且,所以,所以,又,设平面的一个法向量为,所以,即,令,解得,所以平面的一个法向量为,由图可知平面与平面所成角为锐角,所以,故平面与平面所成角的余弦值为18(1)分布列答案见解析,数学期望:(2)这批产品中优质品占比满足生产合同的要求,理由见解析【详解】(1)因为质量指标分值不低于60分的产品为优质品,所以优质品有3件,则,所以Y的分布列如下:Y012P故.(2)这批产品中优质品占比满足生产合同的要求,理由如下:这10件农产品的平均数为,这10件农产品的方差为,由,可令,这批产品中优质品占比满足生产合同的要求,理由如下:记这种产品的质量指标分值为X,由题意可知,可得,有所以有足够的理由判断这批产品中优质品占比满足生产合同的要求.19(1)(2)证明见解析.【详解】(1)令,其定义域为,则,令,则,当时,所以在上单调递减;当时,所以在上单调递增;因为当时,当时,且,又恰有两个零点,即有两个根,故函数与有两个交点,所以,故a的取值范围为.(2)因为的两个零点分别为(),所以,所以,故,所以,所以要证成立,只需证明,即证,即证,令,即证明,令,又,由于,令,所以,而,其对称轴为,所以在上单调递增,所以,于是在上恒成立,因此在上单调递增,所以,所以原命题得证.答案第5页,共6页
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号